
Journal of Applied Mechanics and Technical Physics, Vol. 51, No. 1, pp. 31–43, 2010

STABILITY OF A VISCOUS LIQUID JET

IN A HIGH-FREQUENCY ALTERNATING ELECTRIC FIELD

UDC 532.517.013.4 : 537.2E. A. Demekhin and S. V. Polyanskikh

The stability of a liquid electrolyte placed in a tangential electric field oscillating harmonically at high
frequency is considered assuming that the liquid is viscous and Newtonian. It is shown that, if the
Peclet number calculated from the thickness of the Debye layer is small, the problem can be solved
separately for the electrodynamic part of the problem in the Debye layer and for the hydrodynamic
part of the problem in the jet. The linear stability of the trivial solution of the problem is investigated.
A dispersion relation is derived and used to study the effect of the amplitude and frequency of electric
field oscillations on the stability of the jet. It is shown that the presence of the external oscillating field
has a stabilizing effect on the jet. The basic stability regimes as functions of the control parameters
of the problem and bifurcation changes in the regimes are investigated.
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Introduction. The problem of the behavior of a capillary jet in an external electric field is a classical problem
of electrohydrodynamics and has numerous applications, in particular, as a liquid spraying method (printers, car
carburetors, fuel spraying, etc.). The case of a DC external electric field and a charge on the jet surface has been
studied in many papers (see, for example, [1–5]), which have shown that the presence of a charge on the free
surface leads to destabilization of the jet with respect to long-wave perturbations, and the presence of an external
tangential field, in contrast, stabilizes the jet. As is known, capillary jets are unstable and break up into droplets
[2, 6]. Experimental investigation of liquid jets and droplets acted upon by an electric field was pioneered in [7].
There are a large number of models describing various features of the processes studied. A review of the various
models currently available is given in [8].

The behavior of a jet depends strongly on whether the working jet liquid is a dielectric, conductor, or
electrolyte. At present, electrolytes are the least studied, although they have been investigated in experiments [7]
and are often used in practice for electrospraying.

In some experimental paper, in particular, [9], it is proposed to use an alternating electric field of high
frequency instead of a constant field. Advantages of this external force field are the presence of a new control
parameter, i.e., the oscillation frequency; electroneutrality of the liquid droplets formed during spraying; the absence
of undesirable chemical reactions at high oscillation frequencies (above 10 kHz) because the oscillation period is
much shorter than the characteristic reaction time. The purpose of the present work is to develop a model to
describe phenomena of this type.

We note that, initially, the behavior of liquid droplets and jets in an external electric field was described by
static models or models assuming an ideal liquid. This approach is permissible because the primary instability is
caused by normal stresses on the interface. Nevertheless, later papers [10, 11] reported some contradictions resulting
from the ideal liquid assumption and discrepancies between theoretical results and experimental data. For example,
studying the collapse of liquid jets, Eggers [10] notes that a thin boundary layer near the neck that arises at an
arbitrarily low viscosity plays a key role in the collapse. Cherney [11] gives an asymptotic solution of the problem
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of emission of a liquid jet from a Taylor cone and shows that the jet is formed from a thin boundary layer near the
cone–gas interface. Therefore, the inviscid liquid model appears to be unsuitable for describing the behavior of the
liquid jet issuing from a Taylor cone at large values of the potential difference.

The present paper studies the stability of a viscous capillary liquid jet of a cylindrical shape in a tangential
electric field oscillating at a frequency ω̃ of order κ̃/ε̃ (κ̃ is the electrical conductivity and ε̃ is the dielectric
permittivity of the liquid). The mechanical motion in the system induced by this field includes a slowly varying
average component and a fast oscillatory component [12]. The resulting motion is their superposition, with the
contribution of the oscillatory component tending to zero with increasing oscillation frequency [12].

By linearizing the systems near the trivial solution, we obtain the eigenvalue problem which depends on
the wavenumber and linear growth coefficient of the perturbations and the main dimensionless parameters of the
system. In the present paper, we study the dependence of the stability region on the specified parameters and the
transitions between various stability regimes upon reaching critical values of the control parameter. It is shown
that an increase in the oscillation amplitude of the external field leads to stabilization of the jet due to narrowing
of the range of unstable wavelengths and due to a decrease in the maximum value of the linear growth coefficient.
An increase in the oscillation frequency, in contrast, leads to insignificant destabilization of the jet. It is established
that for fixed physicochemical properties of the liquid, the field oscillation frequency has two critical values that
correspond to changes in the stability regime.

1. Formulation of the Problem. We consider a viscous liquid electrolyte jet placed in an external
tangential electric field. The processes occurring in the liquid phase are described by two transfer equations for
negative and positive ions, the Poisson equation for the electric field potential, the hydrodynamic Navier–Stokes
equations, and the continuity equation. The liquid is a simple binary electrolyte: z+ = −z− = 1. The diffusion
coefficients of negative and positive ions are set equal to each other: D̃+ = D̃− = D̃. The complete system of
equations is written as

∂c̃±

∂t̃
+ Ũ · ∇̃c̃± = D̃

(
± F̃

R̃T̃
∇̃ ·

(
c̃±∇̃Φ̃

)
+ ∇̃2c̃±

)
,

ρ̃
(∂Ũ

∂t̃
+

(
Ũ · ∇̃

)
Ũ

)
= −∇̃p̃+ μ̃∇̃2Ũ + F̃ (c̃− − c̃+)∇̃Φ̃, (1)

∇̃ · Ũ = 0, ∇̃2Φ̃ = F̃ (c̃− − c̃+)/ε̃.

Here c̃+ and c̃− are the mole concentrations of cations and anions, respectively, Ũ is the liquid velocity vector, D̃ is
the diffusivity of ions, F̃ is the Faraday number, R̃ is the universal gas constant, T̃ [K] is the temperature, Φ̃ is
the electric field potential, ε̃ is the absolute dielectric permittivity of the liquid, p̃ is the pressure, μ̃ is the dynamic
viscosity, and ρ̃ is the density of the liquid; the dimensionless quantities are marked by the tilde. Away from the
interface, the solution is considered electroneutral:

c̃± = c̃∞. (2)

The gas surrounding the jet is considered a dielectric. The electric field potential in the gas phase satisfies
the Laplace equation

∇̃2 ˜̄Φ = 0. (3)

Here and below, the quantities corresponding to the external problem for the gas are marked by the bar.
In the present work, the most important case of axisymmetric perturbations of the jet is investigated. The

following cylindrical coordinates are introduced: x̃ is the coordinate along the axis of the unperturbed jet and ỹ is
the radial coordinate. To describe the process near the free boundary of the liquid phase, it is reasonable to use
the coordinates ñ and τ̃ [ñ is the coordinate along the unit outward normal n to the interface; τ̃ is the coordinate
along the unit tangent τ in the plane (x̃, ỹ) (Fig. 1)]. The boundary conditions on the interface are given below.

The gas is assumed to be nonconducting; therefore, the flux of negative and positive ions through the free
surface is equal to zero:

ñ = 0: ± c̃±F̃
R̃T̃

∂Φ̃
∂ñ

+
∂c̃±

∂ñ
= 0. (4)
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Fig. 1. Diagram of the problem: (a) coordinate systems in the problem of liquid jet motion under the
action of external tangential electric field E∞; (b) boundary layer near the free boundary of the liquid.

The potential across the interface is continuous:

ñ = 0: Φ̃ = ˜̄Φ. (5)

Because of the difference in dielectric permittivity between the media, the derivative of the potential along the
normal undergoes a discontinuity:

ε̃
∂Φ̃
∂ñ

= ˜̄ε
∂ ˜̄Φ
∂ñ

(6)

(˜̄ε is the dielectric permittivity of the gas surrounding the jet). The balance conditions for the normal and shear
stresses, respectively, are written as

[nT̃F n] + [nT̃En] = γ̃K̃, [nT̃F τ ] + [nT̃Eτ ] = 0, (7)

where square brackets denote a jump of the quantity across the interface, γ̃ is the surface tension, K̃ is the average
curvature of the interface, T̃F is the hydrodynamic stress tensor, and T̃E is the Maxwell–Wagner electrical stress
tensor, whose components in any orthogonal coordinate system are given by

T̃E
ij = ε̃(−Ẽ2δij/2 + ẼiẼj).

In particular, in the coordinates ñ and τ̃ , the normal electrical stress (electrical pressure) and the tangential electrical
stress (electrical shift) are written as

nT̃En = T̃E
nn = ε̃(Ẽ2

n − Ẽ2
τ )/2, nT̃Eτ = T̃E

nn = ε̃ẼnẼτ . (8)

The kinematic condition is written as

ṽ =
∂h̃

∂t̃
+ ũ

∂h̃

∂x̃
, (9)

where ỹ = h̃(t̃, x̃) is the equation of the interface in cylindrical coordinates and ũ and ṽ are the liquid velocity
components x̃ and ỹ, respectively.

The problem is closed by the boundary condition at infinity. The oscillations of the external field are
considered harmonic:

˜̄Φ = Φ̃∞ = −x̃Ẽ∞ eiω̃t̃ + c. c. (10)

(c. c. denotes a complex-conjugate quaintly).
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System (1)–(10) is reduced to dimensionless form by dividing the lengths, concentrations, electric potential,
velocities, time, and pressure, respectively, by the quantities

r̃0, c̃∞, Φ̃0 =
( γ̃r̃0
ε̃

)1/2

, Ũ0 =
( γ̃

ρ̃r̃0

)1/2

, t̃0 =
r̃0

Ũ0

, p̃0 = ρ̃Ũ2
0 ,

where r̃0 is the radius of the unperturbed jet.
System (1) is written in dimensionless form

Pe
(∂c±
∂t

+ u
∂c±

∂x
+ v

∂c±

∂y

)

= ±Λ
{ ∂

∂x

(
c±

∂Φ
∂x

)
+

1
y

∂

∂y

(
yc±

∂Φ
∂y

)}
+
∂2c±

∂x2
+

1
y

∂

∂y

(
y
∂c±

∂y

)
; (11)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − ∂p

∂x
+

1
Re

{∂2u

∂x2
+

1
y

∂

∂y

(
y
∂u

∂y

)}
+

1
ε2

(c− − c+)
∂Φ
∂x

,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
Re

{∂2v

∂x2
+

∂

∂y

(1
y

∂

∂y
yv

)}
+

1
ε2

(c− − c+)
∂Φ
∂y

;
(12)

∂u

∂x
+

1
y

∂

∂y
(yv) = 0; (13)

ε2
{∂2Φ
∂x2

+
1
y

∂

∂y

(
y
∂Φ
∂y

)}
= c− − c+, y < h; (14)

∂2Φ̄
∂x2

+
1
y

∂

∂y

(
y
∂Φ̄
∂y

)
= 0, y > h; (15)

for y = h,

±Λc±
∂Φ
∂n

+
∂c±

∂n
= 0; (16)

Φ = Φ̄, δ
∂Φ
∂n

=
∂Φ̄
∂n

, [nTF n] + [nTEn] = K, [nTF τ ] + [nTEτ ] = 0; (17)

v =
∂h

∂t
+ u

∂h

∂x
; (18)

for y = ∞,

Φ̄ = −xE∞ eiωt + c. c. (19)

Here the parameters of the system

Pe =
Ũ0r̃0

D̃
, Re =

ρ̃r̃0Ũ0

μ̃
, ε2 =

λ̃2
D

r̃20
=

ε̃Φ̃0

F̃ c̃∞r̃20
, Λ =

F̃ Φ̃0

R̃T̃
, δ =

ε̃
˜̄ε

are dimensionless; λ̃D = (ε̃Φ̃0/F̃ c̃∞)1/2 is the Debye layer thickness. Away from the interface, c± = 1. Usually,
in experiments, the parameter ε is varied in the range 10−6–10−2. The problem is solved under the assumption
that ε � 1 and ε2 Pe � 1. From Eq. (14), it follows that, in this case, a small parameter at the higher derivative
appears which generates a boundary layer in the vicinity of the free surface of the liquid. Thus, in the limit ε→ 0,
the problem splits into an external problem (away from the interface) and an internal problem (near the interface).

2. Internal Problem. Following [13], we consider the solution of system (11)–(19) in a thin Debye layer
of thickness of order O(ε). Next, it is shown that, with some additional assumptions in this region, it is possible to
ignore hydrodynamic effects and solve the electrodynamic problem independently.
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In the internal coordinates ξ = x and η = (y − h)/ε, Eqs. (11) and (14) are written as

ε2 Pe
∂c±

∂t
+ ε2 Pe

(
u
∂c±

∂ξ
+ v

∂c±

∂η

)
= ±Λ

{
ε2
∂

∂ξ

(
c±

∂Φ
∂ξ

)

+
1

h+ εη

∂

∂η

(
(h+ εη)c±

∂Φ
∂η

)}
+ ε2

∂2c±

∂ξ2
+

1
h+ εη

∂

∂η

(
(h+ εη)

∂c±

∂η

)
; (20)

ε2
∂2Φ
∂ξ2

+
1

h+ εη

∂

∂η

(
(h+ εη)

∂Φ
∂η

)
= c− − c+. (21)

Equations (20) and (21) are supplemented by dimensionless boundary conditions (2) and (16) written in the internal
variables:

η → −∞: c± → 1,

η = 0: ±Λc±
∂Φ
∂η

+
∂c±

∂η
= 0.

The main assumptions of this work are the following:

ε� 1, ε2 Pe � 1, Ω ≡ Δ/(2Λ) = O(1) (22)

(Δ = ε2ω Pe and ω = ω̃t̃0 is the dimensionless frequency of electric field oscillations). The first assumption allows
the interface in the internal coordinates to be considered locally flat. By virtue of the second assumption, the
convective terms in Eq. (20) can be ignored and, hence, the electrodynamic part of the problem does not contain
unknown liquid velocities. The third assumption actually specifies the allowable frequency range: the dimensionless
oscillation frequency ω̃ should be of order κ̃/ε̃, where κ̃ = 2F̃ 2D̃c̃∞/(R̃T̃ ) is the electrical conductivity of the liquid.
Under the assumptions made above, the quantity κ̃/ε̃ has the meaning of the order of the frequency in the range
103–107 kHz [14] if the ion concentration c̃∞ varies in the range 10−3–10 mole/m3.

Thus, in a narrow Debye layer in a certain frequency range, the total problem is divided into two problems,
and the electrodynamic problem can be solved earlier. For ε→ 0 and ε2 Pe → 0, Eqs. (20) and (21) have the form

ε2 Pe
∂c±

∂t
= ±Λ

∂

∂η

(
c±

∂Φ
∂η

)
+
∂2c±

∂η2
,

∂2Φ
∂η2

= c− − c+. (23)

In this case, the time derivative should not be ignored by virtue of the third condition in (21), according to which
the oscillation frequency of the external electric field is high. To solve system (23), we use the Debye approximation

c± = 1 + ĉ± eiωt + c. c., ĉ± � 1, Φ = Φ̂± eiωt + c. c. (24)

Introducing the space charge distribution density ρ = c+− c− and ρ = ρ̂ eiωt +c. c., substituting (24) into Eq. (23),
and linearizing the result, we obtain the following linear system of ordinary differential equations:

d2ρ̂

dη2
− (2Λ + iΔ)ρ̂ = 0,

d2Φ̂
dη2

= −ρ̂;

η = 0: 2Λ
dΦ̂
dη

+
dρ̂

dη
= 0, Φ̂ = ˆ̄Φ;

η = −∞: ρ̂ = 0

(the potential ˆ̄Φ is taken from the solution of the problem for the gas). From this system of equations, we obtain
the relationship between the complex amplitudes of the surface charge density σ̂ and electric field intensity:

σ̂ =

0∫

−∞
ρ̂ dη =

i

Ω
dΦ̂
dη

∣∣∣
η=−∞

,

and the jump of the potential amplitude in the internal zone

Φ̂
∣∣∣
η=−∞

− ˆ̄Φ =
i

Ω(2Λ + iΔ)1/2

dΦ̂
dη

∣∣∣
η=−∞

. (25)
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In the external coordinates, the surface charge density is expressed in dimensionless form

σ̃ =
iκ̃

ω̃

∂ ˆ̃Φ
∂ñ

∣∣∣
ñ�−ε

eiω̃t̃ + c. c. (26)

3. External Problem. The passage to the limit ε → 0 in Eq. (14) is equivalent to the assumption that
the charge is located entirely on the interface and, hence, produces additional stress. The expression on the right
side of formula (25) in the external coordinates has order O(ε/

√
Λ ); therefore, for ε→ 0, condition (5) can be left

without changes. In view of expressions (26), for the surface charge density, condition (6) should be replaced by
the condition

ñ = 0: Φ̃ = ˜̄Φ, ε̃
∂Φ̃
∂ñ

= ˜̄ε
∂ ˜̄Φ
∂ñ

+ σ̃. (27)

Thus, it is necessary to specify only boundary conditions (17) on the interface (here square brackets denote
the difference between the values of the gas and liquid parameters outside the Debye layer). In view of (27), from
(8) we obtain

[nT̃En] =
ε̃− ε̄

2

{ ε̃
ε̄

(∂Φ̃
∂ñ

)2

+
(∂Φ̃
∂τ̃

)2}
− ε̃

ε̄

∂Φ̃
∂ñ

σ̃ +
1
2ε̄
σ̃2,

[nT̃Eτ ] = −∂Φ̃
∂τ̃

σ̃.

(28)

By virtue of the electroneutrality condition, terms of order O(1/ε2) in Eqs. (12) containing the Coulomb force are
absent in the external problem. The Poisson equation (14) becomes the Laplace equation for the potential inside the
jet. Thus, for ε→ 0, the external problem has only the hydrodynamic part. Substituting dimensionless expressions
(26) and (28) into the boundary conditions of system (11)–(19) and passing to the limit ε → 0, we obtain the
external problem in the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − ∂p

∂x
+

1
Re

{∂2u

∂x2
+

1
y

∂

∂y

(
y
∂u

∂y

)}
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
Re

{∂2v

∂x2
+

∂

∂y

(1
y

∂

∂y
yv

)}
, (29)

∂u

∂x
+

1
y

∂

∂y
(yv) = 0;

∂2Φ
∂x2

+
1
y

∂

∂y

(
y
∂Φ
∂y

)
= 0, y < h,

∂2Φ̄
∂x2

+
1
y

∂

∂y

(
y
∂Φ̄
∂y

)
= 0, y > h;

(30)

for y = h,

Φ = Φ̄, δ
∂Φ
∂n

=
∂Φ̄
∂n

+ σ; (31)

p− 1
Re

(τxxn
2
x + 2τxynxny + τyyn

2
y) +

δ − 1
2δ

{
δ
(∂Φ
∂n

)2

+
(∂Φ
∂τ

)2}
− δσ

∂Φ
∂n

+
1
2
σ2 = K,

1
Re

{(τxx − τyy)nxny + τxy(n2
y − n2

x)} + σ
∂Φ
∂τ

= 0;
(32)

v =
∂h

∂t
+ u

∂h

∂x
; (33)

for y = ∞,

Φ̄ = −xE∞ eiωt + c. c. (34)
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Here nx and ny are the components of the normal vector n:

nx = − hx

(1 + h2
x)1/2

, ny =
1

(1 + h2
x)1/2

,

∂

∂n
= nx

∂

∂x
+ ny

∂

∂y
,

∂

∂τ
= ny

∂

∂x
− nx

∂

∂y
, K =

1
h(1 + h2

x)1/2
− hxx

(1 + h2
x)3/2

,

τxx = 2
∂u

∂x
, τxy =

∂u

∂y
+
∂v

∂x
, τyy = 2

∂v

∂y
, σ =

iδ

Ω
∂Φ̂
∂n

∣∣∣
n=0

eiωt + c. c.,

and the pressure in the gas p̃0 = 0.
Returning to the initial formulation (11)–(19), we note that, although the averages of the electric potential

and concentration are equal to zero, the Navier–Stokes equations, by virtue of their nonlinearity, include the electric
force with a nonzero average. Thus, the liquid motion can be divided into the average and oscillatory motions.
Following the classical averaging theory [12], it is easy to show that, to within small terms of higher order in
frequency, the velocity field can be represented as

U(t, x) = Ū0(t, x) +
1
ω

Ũ1(t, x) eiωt + c. c.,

where Ū0 and Ũ1 are the average and oscillatory velocity components. Below, the subscript 0 is omitted. Thus, for
ω → ∞, the term containing Ũ1 can be neglected.

The electrical quantities contain only the oscillatory component. The contribution to the average motion of
the system comes from the nonlinear terms with nonzero averages:

〈(∂Φ
∂τ

)2〉
= 2

∣∣∣∂Φ̂
∂τ

∣∣∣
2

,
〈(∂Φ

∂n

)2〉
= 2

∣∣∣∂Φ̂
∂n

∣∣∣
2

,

〈σ2〉 =
2δ2

Ω2

∣∣∣∂Φ̂
∂n

∣∣∣
2

,
〈
σ
∂Φ
∂τ

〉
= −2δ

Ω
Im

(∂Φ̂
∂n

∂Φ̂
∂τ

∗)
,

〈
σ
∂Φ
∂n

〉
= 0.

(35)

Here the asterisk denotes complex conjugation; angular brackets denote averaging over the fast time ωt:

〈 · 〉 =
1
T

T∫

0

dt =
ω

2π

2π/ω∫

0

dt.

The boundary conditions (32) averaged taking into account relations (35), become

p− 1
Re

(τxxn
2
x + 2τxynxny + τyyn

2
y) +

( δ2
Ω2

+ δ − 1
)∣∣∣∂Φ̂
∂n

∣∣∣
2

+
(
1 − 1

δ

)∣∣∣∂Φ̂
∂τ

∣∣∣
2

= K,

1
Re

{(τxx − τyy)nxny + τxy(n2
y − n2

x)} − 2δ
Ω

Im
(∂Φ̂
∂n

∂Φ̂
∂τ

∗)
= 0.

(36)

4. Linear Stability. Problem (19)–(34) has the trivial solution

h = 1, u = v = 0, p = 0, Φ̂ = ˆ̄Φ = −E∞x.

The velocity components and the free boundary are subject to small perturbations:

u ∼ û(y) eiαx+λt, v ∼ v̂(y) eiαx+λt, p ∼ p̂(y) eiαx+λt, h ∼ 1 + ĥ eiαx+λt . (37)

By virtue of Eqs. (30)–(34), the perturbations of the potential are parametric in time and are generated by the
free-boundary perturbation (37). In particular, at the interface, to within terms of the higher order of smallness,
we have

Φ̂
∣∣∣
y=h

= Φ̂
∣∣∣
y=1

+
∂Φ̂
∂y

∣∣∣
y=1

ĥ eiαx+λt + . . . .

Thus, the perturbations of the potential amplitudes should obey

Φ̂ ∼ −E∞x+ ϕ(y)ĥ eiαx+λt, ˆ̄Φ ∼ −E∞x+ ϕ̄(y)ĥ eiαx+λt . (38)
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Let us consider the electrostatic part of the problem. Substitution of expressions (38) into Eqs. (30) yields
the Bessel equations for the quantities ϕ and ϕ̄. Requiring that the potential be regular for y = 0 and y = ∞,
we obtain

ϕ(y) = C1I0(αy), ϕ̄(y) = C2K0(αy), (39)

where I0 and K0 are modified zero-order Bessel functions. To determine the unknown constants C1 and C2, we
linearize conditions (31):

y = 1: ϕ = ϕ̄, δ(1 − i/Ω)(iαE∞ + ϕ′) = iαE∞ + ϕ̄′.

This implies that

C1 =
iE∞
I0

Π, C2 =
iE∞
K0

Π,

Π = Π(δ, α,Ω) =
1 − δ(1 − i/Ω)

δ(1 − i/Ω)I1(α)/I0(α) −K1(α)/K0(α)

(40)

(I1 = I ′0 and K1 = K ′
0 are modified first-order Bessel functions). From formulas (38)–(40), we obtain the solution

of the electrostatic part of the of linear stability problem.
The obtained expressions for the complex amplitudes of the potential are used to linearize conditions (36):

∣∣∣∂Φ̂
∂τ

∣∣∣
2

≈ E2
∞(1 + 2αΠRĥ eiαx+λt),

∣∣∣∂Φ̂
∂n

∣∣∣
2

≈ 0,

Im
(∂Φ̂
∂n

∂Φ̂
∂τ

∗)
≈ −iE2

∞αΠI
I1
I0
ĥ eiαx+λt .

(41)

Here ΠR = (Π+Π∗)/2 and ΠI = (Π−Π∗)/(2i). Substituting expressions (37) and (41) into Eqs. (29) and conditions
(33) and (36) and linearizing these equations and conditions, we obtain the eigenvalue problem

λû = −iαp̂+
1

Re

{
− α2û+

1
y

∂

∂y

(
y
∂û

∂y

)}
,

λv̂ = −p̂′ + 1
Re

{
− α2v̂ +

∂

∂y

(1
y

∂

∂y
yv̂

)}
, (42)

iαû+
1
y

∂

∂y
(yv̂) = 0;

y = 1: p̂− 2
Re

v̂′ + (1 − α2)ĥ+
(
1 − 1

δ

)
2E2

∞αΠRĥ = 0,

1
Re

(û′ + iαv̂) +
2iδ
Ω

E2
∞αΠI

I1
I0
ĥ = 0, v̂ = λĥ.

(43)

Introducing the Stokes stream function ψ

u =
1
y

∂ψ

∂y
, v = −1

y

∂ψ

∂x
,

we reduce system (42) to one equation. In terms of perturbations of the stream function (ψ̂ = iyv̂/α and ψ̂′ = yû),
problem (42), (43) is written as

( d2

dy2
− 1
y

d

dy
− β2

)( d2

dy2
− 1
y

d

dy
− α2

)
ψ̂ = 0; (44)

y = 1: − λψ̂′ +
1

Re
(ψ̂′′′ − ψ̂′′ + (1 − 3α2)ψ̂′ + 2α2ψ̂) + iα(1 − α2)ĥ+ 2

(
1 − 1

δ

)
iE2

∞α
2ΠRĥ = 0,

1
Re

(ψ̂′′ − ψ̂′ + α2ψ̂) +
2iδ
Ω

E2
∞αΠI

I1
I0
ĥ = 0, αψ̂ = iλĥ,

(45)
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Fig. 2. Bifurcations of the linear growth parameters for Re = 0.1: (a) Ω = 0.2 (Ω < Ω1); (b) Ω = 0.33 (Ω = Ω1);
(c) Ω = 0.4 (Ω1 < Ω < Ω2); (d) Ω = 1 (Ω > Ω2).

Fig. 3. Maximum growth parameters in the plane (α, E∞) for Re = 0.1: (a) Ω = 0.2 (Ω < Ω1); (b) Ω = 0.33 (Ω = Ω1);
(c) Ω = 0.4 (Ω1 < Ω < Ω2); (d) Ω = 1 (Ω > Ω2); solid curves are neutral stability curves; dashed curves are maximum
growth curves.
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Fig. 4. Maximum growth parameter λmax versus perturbation wavenumber α for Ω = 0.35 (1),
0.3 (2), 0.25 (3), and 0.2 (4).

Fig. 5. Linear growth parameter versus perturbation wavenumber for E∞ = 0.35, Re = 0.1 and
Ω = 0.2 (1), 0.5 (2), 1 (3), and 3 (4); dashed curve refers to Ω = 0; dot-and-dash curve to Ω = ∞.

where β2 = α2 + λRe. The general solution of Eq. (44) which is regular for y = 0 is written as

α �= β: ψ̂(y) = iÂyI1(βy) + iB̂yI1(αy); (46)

α = β: ψ̂(y) = iÂy2I0(αy) + iB̂yI1(αy). (47)

5. Case α �= β. Asymptotic Stability. The condition α �= β is equivalent to the fact that λ �= 0.
Hence, in this case, the perturbations can increase or decrease exponentially. Substituting representation (46) into
boundary conditions (45) taking into account the known recursive properties of the Bessel functions, we obtain the
following linear homogeneous system of equations for the unknown constants Â, B̂, and ĥ:

⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

⎛
⎝

Â

B̂

ĥ

⎞
⎠ = 0. (48)

Here

a11 = 2α2(I1(β) − βI0(β))/Re, a12 = −αλI0(α) + 2α2(I1(α) − αI0(α))/Re,

a13 = α(1 − α2) + (1 − 1/δ)2E2
∞α

2ΠR,

a21 = (λ+ 2α2/Re)I1(β), a22 = 2α2I1(α)/Re, a23 = (2δ/Ω)E2
∞αΠII1(α)/I0(α),

a31 = αI1(β), a32 = αI1(α), a33 = −λ.
The presence of nontrivial solutions of system (48) is equivalent to the satisfaction of the dispersion relation

D(λ, α) = det (aij) = 0. (49)

6. Case α = β. Neutral Stability. For λ→ 0, we have β → α and the first two columns of the dispersion
matrix (aij) become linearly dependent. In this case, one should replace the dispersion relation (49) by the relation

∂D

∂λ

∣∣∣
λ=0

= 0

or use representation (47) to construct a new dispersion matrix.
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The neutral stability problem is written as

2δ
Ω
E2

∞αΠI

{
1 + α

(I1(α)
I0(α)

− I0(α)
I1(α)

)}
+ 2

(
1 − 1

δ

)
E2

∞αΠR + 1 − α2 = 0. (50)

The Reynolds number is not explicitly included in (50). Hence, neutral stability is completely determined by the
parameters α, δ, E∞, and Ω.

We note that, for Ω = ∞ (which corresponds to ω = ∞), the neutral stability problem becomes a similar
problem for an inviscid liquid [15]. Thus, at high oscillation frequencies, viscosity does not influence the neutral
stability. This effect can be considered an analog of the well-known effect of classical mechanics — the disappearance
of friction at high-frequency oscillations.

7. Numerical Analysis of Dispersion Relations. The internal parameter of the problem is the pertur-
bation wavenumber α, and the external parameters of the problem are the ratio of the dielectric permittivities δ, the
Reynolds number Re, the electric-field intensity E∞, and the parameter Ω = ε2ω Pe /(2Λ), which is proportional to
the dimensionless oscillation frequency of the field ω. All calculations were performed for the value δ = 24, which
corresponds to the alcohol used in experiments [9]. The results of calculations for other values of δ, in particular, for
the value δ = 70, which corresponds to water, are in qualitative agreement. The calculations show that, for small
Reynolds numbers characteristic of microjets, the jet motion depends weakly on the value of Re. All calculations
were performed for Re = 0.1.

An analysis of the results of calculations using relations (49) and (50) shows that the main linear-stability
characteristics depend significantly on the control parameter Ω. There are two critical values Ω1 ≈ 0.33 and
Ω2 ≈ 0.45 for which there is bifurcation of the linear growth parameters λ and the maximum growth curves.
Figure 2 gives curves of the linear growth parameters versus perturbation wavenumber for various values of Ω.
Figure 3 gives the corresponding neutral stability curves in the plane of the parameters (α,E∞) (solid curves) and
the maximum growth curves (dashed curves). The bifurcation value of Ω1 depends weakly on the Reynolds number.
The value of Ω2 is determined from the neutral stability problem.

For Ω < Ω1, the maximum growth curve has two branches — I and II. The first maximum for E∞ = 0,
which arose on branch I, disappears for large values of the intensity E∞. Thus, for small and large values of E∞,
the linear growth parameters have a single maximum. For intermediate intensity values, two maxima are observed.
The maximum of branch I is first larger than the maximum of branch II and then becomes smaller and disappears
(see Fig. 3a). For Ω < Ω1, there is an interval of wavenumbers in which the maximum growth coefficient is absent
(Fig. 4).
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For the first critical value Ω = Ω1 ≈ 0.33, branches I and II of the maximum growth curve merge into one
curve (see Fig. 3b) which then again splits into two branches. The corresponding maximum growth parameters for
branch I are smaller than the parameters for branch II (see Fig. 3c). For Ω = Ω2, the nature of the instability
changes. The range of the intensity E∞ in which there were two intervals of instability is absent.

For Ω > Ω2 and any value of E∞, the linear growth parameters have a single maximum which continuously
depends on E∞. As E∞ increases, the instability region decreases to zero, and the maximum growth curve has a
single continuous branch (see Fig. 3d and Fig. 4). Figure 5 gives a fuller understanding of the nature of the curve
of the linear growth parameters versus the parameter Ω.

Figure 6 gives neutral stability curves in the plane of the parameters (α,E∞) for various values of Ω. It is
evident that the external tangential electric field stabilizes the jet. An increase in the intensity E∞ leads to narrowing
of the instability region and a decrease in the linear growth coefficient for wavenumbers for which instability occurs.
An increase in the oscillation frequency ω leads to destabilization of the jet due to insignificant narrowing of the
stability region in the space of the determining parameters, which, however, is always wider than that in the absence
of an electric field. In addition, it follows from the aforesaid that, by increasing the oscillation frequency, one can
also completely suppress long-wave instability that arises at low frequencies (for Ω < Ω1).

Conclusions. Liquid jets in an external electric field are of interest from the viewpoint of their applications
in technological micro- and nanospraying processes and ultrafine fiber manufacture, and from the viewpoint of new
types of electrohydrodynamic instability typical of such jets [16, 17]. In particular, the case of a nonstationary
external electric field is of great significance.

In the present work, an axisymmetric model was constructed which describes instability of a liquid electrolyte
jet placed in an external oscillating electric field determined by two control parameters — the oscillation amplitude
and frequency. In a linear approximation, increasing the oscillation amplitude was shown to lead to stabilization of
the jet, whereas increasing the frequency leads to insignificant destabilization of the jet. The main linear-stability
characteristics were investigated as functions of the external parameters of the problem. It was shown that the
examined frequency range contains two bifurcation values upon reaching which the nature of stability changes.

This work was supported by the Russian Foundation for Basic Research (Grant No. 08-01-00005-p).
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